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ABSTRACT: Previous work on continental convective systems has indicated that there is a positive relationship between
short-term rainfall rates and storm-scale to mesoscale rotation. However, little has been done to explore this relationship
in dense observing networks or in landfalling tropical cyclone (LTC) environments. In an effort to quantify the relationship
between rainfall rates and embedded rotation of this scale, we use several sets of observations that were collected during
Tropical Storm Imelda (2019). First, a meteorological overview of the event is presented, and the ingredients that led to its
flash flood–producing rainfall are discussed. Then, two analyses that investigate the relationship between rainfall rates and
storm-scale to mesoscale rotation in the LTC remnants are examined. The first method relies on products from the Multi-
Radar Multi-Sensor system, where two spatial averaging approaches are applied to the 0–2-km accumulated rotation track
and gauge bias-corrected quantitative precipitation estimate products over hourly time periods. Using these fields as prox-
ies for rotation and rain rates, the results show a positive spatiotemporal relationship between the two products. The sec-
ond method time matches subjectively identified radar-based rotation and 5-min surface rain gauge observations. There,
we show that nearly twice the amount of rain was recorded by the gauges when storm-scale to mesoscale rotation was pre-
sent nearby, and the differences in 5-min rainfall observations between when rotation was present versus not was statisti-
cally significant. Together, these results indicate that more rain tended to fall in locations where there was rotation
embedded in the system.

SIGNIFICANCE STATEMENT: Tornadoes and flash floods frequently occur in unison over the same locations,
which can complicate forecasting, warning, and communication efforts within the meteorology community. Previous
work has furthered the understanding of the interconnectedness of these hazards by suggesting a relationship between
two of their predecessors: storm rotation and rainfall rates. We build on this research by quantifying the relationship of
these two processes using observations from Tropical Storm Imelda: a system that brought devastating flooding to
southeast Texas in September 2019. Our results show across multiple observational datasets that more rain tended to
fall in locations where there was rotation embedded in the tropical storm remnants.
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1. Introduction

Tornadoes and flash floods (TORFFs) can be deadly haz-
ards on their own (Ashley 2007; Ashley and Ashley 2008), but
what happens when they occur concurrently over the same
locations? It is a threat that occurs somewhat frequently, with
an average of 400 TORFF warning overlaps occurring each
year in the contiguous United States (CONUS) (Nielsen et al.
2015). These situations complicate the forecasting process for
meteorologists, as environments that produce TORFFs often
share meteorological characteristics with patterns that are
favorable for only one of the two hazards (e.g., Rogash and
Racy 2002; Nielsen et al. 2015). Further, monitoring flash
flooding and tornadoes simultaneously can divide forecaster
attention, potentially leading to one threat being focused on

over the other during warning operations (Henderson et al.
2020). For these reasons, understanding the relationships
among the processes that lead to concurrence of these phe-
nomena is crucial.

The definition for what qualifies as a concurrent TORFF
event has varied some across the literature. While some work
has studied these overlapping hazards on the system-scale
(e.g., Rogash and Smith 2000; Schumacher and Johnson 2006),
other studies have suggested more explicit definitions by con-
straining the time and distance over which the tornado and
flash flood must occur. For example, Rogash and Racy (2002)
provided one of the first attempts at classifying these events by
requiring at least one F31 or two F2 tornadoes to occur within
250 km and 63 h of “significant flash flood reports… in at
least three counties” (p. 156). More recently, Nielsen et al.
(2015) offered an even narrower definition by characterizing a
TORFF event as the collocation of a confirmed tornado path
and flash flood observation within a 3-h time period. The same
study also coined the overlap of a storm-based tornado warn-
ing and flash flood warning within a 30-min time frame as a
TORFF event}a definition that has been applied in recent
studies on of forecasting practices (Henderson et al. 2020) and
tropical cyclone (TC) environments (Burow et al. 2021).
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Though previous work has identified broad, synoptic-scale
environments that are favorable for producing TORFFs (e.g.,
Rogash and Smith 2000; Rogash and Racy 2002; Schumacher
and Johnson 2006; Nielsen et al. 2015) insights on predeces-
sors to individual TORFF events can be attained by focusing
on the storm scale. Early discussions surrounding this topic
have begun with supercell thunderstorms}a convective mode
frequently associated with tornadogenesis or other severe haz-
ards, though considered far less often for their flash flood
potential (e.g., Doswell 1998). This notion that supercells do
not produce heavy rainfall is not necessarily incorrect, as they
often have fast translational speeds (e.g., Doswell 1998; Smith
et al. 2001) and small precipitation footprints (when in the
form of discrete cells, rather than embedded within a larger
convective system). Despite these typical characteristics,
supercells are capable of producing locally heavy rainfall, of-
ten over time spans as short as an hour or less (Doswell 1998;
Smith et al. 2001; Hitchens and Brooks 2013; Bluestein et al.
2015; Brauer et al. 2020; Nielsen and Schumacher 2020a).

Additional investigations of storm dynamics have under-
scored how rotating updrafts in supercells may contribute to
heavy rainfall. Observations have shown that supercells can
have intense upward vertical velocities (e.g., Marinescu et al.
2020)}a quantity that is directly proportional to rain rate (R)
as shown by Doswell et al. (1996):

R 5 Ewq, (1)

where E is precipitation efficiency, w is the vertical ascent
rate, and q is the ambient water vapor mixing ratio. To ex-
pand on this idea, Nielsen and Schumacher (2018) showed
that as increasing vertical wind shear enhances low-level
mesoscale rotation, the nonlinear dynamic component of the
vertical perturbation pressure gradient force increases (indi-
cating enhanced upward motion), which allows parcels that
would have been otherwise stable to be lifted to saturation.
Referring back to Eq. (1), it is logical that this process would
create a more favorable environment for higher rain rates, as
both w and q should theoretically increase, which would in-
crease R as a result. The positive relationship between meso-
scale rotation and locally heavy rainfall rates has also been
corroborated with observations on hourly time scales in conti-
nental systems (Nielsen and Schumacher 2020a).

On the larger system scale, it is well documented that land-
falling tropical cyclones (LTCs) can be prolific rain producers.
With regards to precipitation, system speed is the primary
driver of the excessive rainfall in LTCs, as the slowest-moving
LTCs tend to have a greater maximum storm-total rainfall
(DeHart and Bell 2020; Galarneau and Zeng 2020). However,
as is supported by Eq. (1), moisture content and precipitation
efficiency also play a significant role in rainfall production in
LTCs. For instance, Galarneau and Zeng (2020) documented
that relative to a 40-yr climatology of CONUS LTCs, the
heaviest rain-producing LTCs tended to have above-average
area-mean precipitable water that was sustained for several
days post-landfall. Additionally, enhanced warm rain pro-
cesses and high-concentration drop size distributions have
been documented with LTCs}both of which can positively

contribute to precipitation efficiency (Brauer et al. 2020; DeHart
and Bell 2020). Strongly sheared environments that lead to
rapidly decaying LTCs can also support more well-organized
convection (e.g., Corbosiero and Molinari 2002) and assist with
greater precipitation production (e.g., DeHart and Bell 2020).

While understanding the linkages between LTC precipita-
tion and system-wide dynamics in the production of extreme
rainfall is crucial, some previous work has also highlighted the
role of smaller, more localized dynamics}including meso-
and storm-scale processes}for LTC rainfall. Because LTCs
are often responsible for creating “hybrid” flooding}consisting
of both flash and slow-rise flooding}(Dougherty and Rasmussen
2019) there is reason to believe that multiscale flood-producing
processes exist across the system, such as when supercells are
embedded in the tropical rainbands. Recent work by Brauer
et al. (2020) demonstrated that in Hurricane Harvey (2017),
supercell-style mesoscale rotation was collocated with locally
heavy rainfall}suggesting that these smaller scale dynamics
are important. However, their study did not quantify the con-
tributions of individual embedded supercells to localized rain-
fall rates, and most other research on supercells in LTCs has
focused on tornadogenesis processes (e.g., McCaul 1987, 1991;
McCaul and Weisman 1996; Spratt et al. 1997; Green et al.
2011; Edwards 2012; Edwards et al. 2012, 2018; Nowotarski
et al. 2021) rather than their ability to produce localized extreme
rainfall rates. Since TORFF events can occur frequently in LTCs
(Burow et al. 2021; Nielsen et al. 2015), there is motivation to
further investigate the interconnectivity between heavy rainfall
and tornado-producing processes in these environments.

Thus, our study aims to better understand the significance
of the relationship between heavy precipitation rates and em-
bedded rotation (which can be a precursor to tornadogenesis)
in an LTC environment}an area that has yet to be thor-
oughly investigated. To do this, we use several observational
datasets with fine spatiotemporal resolutions in an effort to
quantify the differences in precipitation when embedded
meso- to storm-scale rotation is present versus when it is not.
We use Tropical Storm Imelda as the case for our investiga-
tion: a system that had significant impacts on the western U.S.
Gulf Coast in September 2019. In section 2, a synoptic and
mesoscale analysis of this LTC is presented, and the multi-
scale factors that contributed to its exceptional rainfall are
highlighted. Section 3 details the datasets and methods that
are used to examine embedded rotation and rainfall rates in
the LTC. Section 4 outlines the results of the analyses, and
section 5 provides conclusions and avenues for future work.

2. Meteorological overview of Tropical Storm Imelda

Tropical Storm Imelda impacted the western Gulf Coast
for several days in September 2019. Despite being a named
TC for only a short time, the slow-moving system brought sev-
eral days of flood-producing heavy rain and a couple of torna-
does to southeast Texas and southern Louisiana (Fig. 1).
During the time leading up to its landfall and the day or so af-
ter, Imelda displayed characteristics similar to most weak
TCs, such as spiraling rainbands with locally heavy precipita-
tion and an isolated tornado risk. However, as Imelda’s
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structure deteriorated over land, the remnants of the system
transformed into a quasi-stationary back-building convective
line with embedded rotation that brought extreme rainfall
rates in excess of 100 mm h21 to some already saturated
areas, which led to flooding. This interesting transformation
provided motivation for the case study.

a. System evolution

Tropical Storm Imelda’s origin can be traced back to an
area of weak mid- to upper-level cyclonic circulation off the
coast of the southeastern United States}separate from the
more prominent trough–ridge pattern to the north}that be-
gan around 9 September. The upper-level low drifted south-
westward across the Florida peninsula into the eastern Gulf
of Mexico as it intensified slightly (Latto and Berg 2020). Em-
bedded in a weak flow regime, the cyclonic feature continued
drifting westward, remaining rather lackluster from an organi-
zational standpoint. The system finally became surface based
by 1200 UTC 16 September, as indicated by buoy data off the
Texas coast. Other than some showers, precipitation remained
primarily offshore until the following day as the low drifted
closer to shore (see Supplemental Fig. 1 for a full radar reflec-
tivity loop of the event). By 1200 UTC 17 September, the

system became better organized and was named Tropical De-
pression 11 while TC-like rainbands spiraled inland. The low
pressure system was upgraded to tropical storm status by
1500 UTC on the same day, then proceeded to make landfall
at its peak intensity [1003-hPa surface pressure with maximum
sustained winds of 40 kt (1 kt’ 0.51 m s21)] less than 3 h later
near Freeport, Texas (Fig. 1).

Soon after Imelda’s landfall, thunderstorm activity gradu-
ally became more widespread in the afternoon of 17 September
as it slowly moved inland (Fig. 2a). The TC quickly weakened to
a depression by 0000 UTC 18 September as precipitation per-
sisted, with the majority of the heaviest rainfall being concen-
trated on the south–southeast side of the system relative to its
center of circulation (Fig. 2b). As the remnant low meandered
northward, additional areas of intense precipitation continued to
push onshore (Fig. 2c).

By 0000 UTC 19 September, widespread rainfall totals in
excess of a few hundred millimeters had already fallen across
the western Gulf Coast region (according to estimates from
the Multi-Radar Multi-Sensor system) as an area of cloud
tops began to rapidly cool south of the remnant TC’s center
of circulation. This feature was associated with a north–
south-oriented convective line that was located just west
of the Texas–Louisiana border (Fig. 2d). By 0330 UTC, small
convective cells began to develop just west of this precipitating
feature, which propagated eastward in a linear fashion as new
cells continued to develop upstream relative to their direction
of propagation (Fig. 2e). This west-northwest–east-southeast-
oriented convective line consisting of merging and back-building
cells intensified over the next few hours, eventually developing a
“t-shaped” structure (Fig. 2f). Additionally, embedded rotating
features on the meso- to storm-scales became established
within the system. This quasi-stationary, back-building meso-
scale convective system (MCS) persisted for at least another
6 h, bringing rainfall rates that were at times in excess of
100 mm h21 (Fig. 2g).

After approximately 12 h of near-stationary behavior, the
linear band of intense precipitation finally began to bow and
progress southwestward by around 1400 UTC (Fig. 2h), bring-
ing it into Harris County and the greater Houston metropolitan
area. The system gradually became weaker and less orga-
nized over the next few hours (Fig. 2i), eventually devolving
into scattered thunderstorms by 2200 UTC. While flooding
persisted, precipitation had largely concluded in southeast
Texas and southern Louisiana on 20 September, though the
remnants of the system did bring some heavy rainfall to
southeast Oklahoma (Latto and Berg 2020) before finally
dissipating.

b. Processes supporting extreme rainfall

There were a number of factors that contributed to the heavy
rainfall rates caused by Imelda’s remnants on 19 September in-
cluding moisture availability, instability, and low-level wind be-
havior. Observed sounding profiles from Lake Charles, Louisiana
(Figs. 3a–c), show that throughout 19 September, when the great-
est amounts of rain fell, a deep unstable layer was maintained,
with the largest values present during the local morning hours

FIG. 1. Tropical Storm Imelda track from the time at which it
became a named tropical storm to its dissipation using National
Hurricane Center HURDAT2 best track data (1800 UTC 23 Aug–
1200 UTC 2 Sep) (Landsea and Franklin 2013) and Weather Predic-
tion Center (WPC) surface analysis data (0000–1800 UTC 19 Sep).
Location of remnants are estimated from low pressure center loca-
tions on WPC surface maps. Dates and times are also annotated.
Green polygons indicate Imelda-related storm-based flash flood warn-
ings and red polygons indicate Imelda-related storm-based tornado
warnings (archived warnings courtesy of Iowa Environmental Meso-
net). Confirmed tornadoes are shown as orange triangular markers
based on data from the NCEI Storm Events Database (NOAA/
National Centers for Environmental Information 2021a).
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(Fig. 3b). The temperature profiles also show a deep warm layer
(with the freezing layer falling between 600 and 700 hPa), signal-
ing a favorable environment for warm rain processes. In
terms of moisture content, the soundings illustrate sustained
saturation near the surface as well as the midlevels, and col-
umn-integrated precipitable water values exceeded
60 mm (Figs. 3 and 4a,b). Meanwhile, a strong gradient in
surface temperatures (Figs. 4c,d) and surface-based CAPE
(SBCAPE, not shown) resulted from a cold pool generated
by differential heating between surfaces under cloudy versus
clear skies, which can also be seen in infrared satellite imag-
ery (not shown). Modest dry air in the low levels (Fig. 3a)
may have further enhanced this temperature gradient via
evaporative cooling. This surface cold pool would ultimately

serve as a mechanical lifting mechanism that would enhance
precipitation processes.

In terms of dynamics, vertical wind profiles in the soundings
indicate a veering wind profile (Fig. 3), which is typically asso-
ciated with warm air advection and helped sustain moisture-
rich air (from the Gulf) over the region. While near-surface
winds show that Imelda’s low-level circulation had largely dis-
sipated by the start of 19 September (Fig. 4c), cyclonic winds
were still present in the low levels (Fig. 4a), as well as the mid-
levels (not shown). Additionally, two enhanced corridors of
low-level winds are apparent at 1200 UTC (Fig. 4b): one from
the west, and one from the south. The former appears to be a
result of confluent winds from the northwest (associated with
the remnant cyclone) and the southeast, while the latter

FIG. 2. The 0.58 radar reflectivity from the Houston–Galveston radar in League City, TX (KHGX), at (a) 2205 UTC 17 Sep; at
(b) 0835 and (c) 2149 UTC 18 Sep; and at (d) 0244, (e) 0334, (f) 0544, (g) 1018, (k) 1404, and (i) 1615 UTC 19 Sep. In (a)–(d), the
black “x” indicates the approximate storm center according to its location at the 6-h time stamp from the HURDAT2 track (shown in Fig. 1)
that is nearest to each radar time stamp.
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seems to be enhanced at least in part by a synoptic-scale pres-
sure gradient (not shown). This pattern of low-level winds
helped provide sufficient vertical shear to support rotating up-
drafts [see storm-relative helicity (SRH) in Fig. 3b] and thus

aided in ascent. Further, this area of enhanced winds im-
pinged perpendicularly on the cold pool that was present
throughout much of the period (Fig. 4d)}a mechanism that
also may have provided forcing for upward motion, as is

FIG. 3. Observed upper-air soundings and hodographs from Lake Charles, LA (KLCH), for (a) 0000 UTC 19 Sep, (b) 1200 UTC 19 Sep,
and (c) 0000 UTC 20 Sep. Parcel trajectories (black line) shown are for surface-based parcels, surface-based convective available potential
energy (SBCAPE) is shaded in red, and temperature and dewpoint profiles are shown as red and green lines, respectively. SBCAPE, mixed-
layer CAPE (MLCAPE), 0–1-km storm-relative helicity (SRH), and 0–3-km SRH are annotated. Wind barbs and hodographs are shown in
units of knots. Sounding data are courtesy of the University of Wyoming sounding archive and are plotted using MetPy (May et al. 2021).

FIG. 4. The 13-km Rapid Refresh (RAP; Benjamin et al. 2016) analysis showing 850-hPa winds (contoured every
5 kt for 251 kt) and column-integrated precipitable water (fill) for (a) 0000 UTC 19 Sep and (b) 1200 UTC 19 Sep;
surface maps showing mean sea level pressure (MSLP) (contoured every 1 hPa), 2-m temperature (fill), and 10-m
winds for (c) 0000 UTC 19 Sep and (d) 1800 UTC 19 Sep.
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evidenced by the maximum in surface moisture convergence
(not shown). Examining the wind shear over a deeper layer
(i.e., 850–250 hPa) reveals a southward-oriented shear vector,
meaning that the most intense rain fell on the downshear side
of the remnant midlevel circulation (not shown). This pattern
in the precipitation footprint is consistent with previous work
that has examined the ways in which synoptic-scale vertical
wind shear can affect precipitation distribution in LTCs (e.g.,
Gao et al. 2009; Shu et al. 2018). As a whole, Imelda’s slow
translational speed allowed these heavy rainfall–producing
processes to persist over the same locations for many hours.

To summarize, a series of ingredients came together to give
way to the heavy rain that fell in association with Imelda’s
remnants. First, column-integrated moisture values had re-
mained high (despite the system being inland for over 48 h),
suggesting that southerly flow in the low levels helped sustain
moisture in the area. There was also ample surface-based in-
stability and well-maintained deep warm cloud depths which
provided favorable conditions for warm rain processes. Addi-
tionally, ongoing precipitation led to a localized temperature
gradient, which provided a boundary for low-level confluence
from the northwest and southwest to interact with}leading
to forcing for ascent. A corridor of enhanced southerly winds
also developed to the east of the confluent wind field, which
enhanced low-level shear and rising vertical motion on the
eastern side of the system. The combination of moderate to
high SBCAPE values and relatively high 0–3-km SRH values
(as shown in the soundings and hodographs) suggested poten-
tial for rotating updrafts (as was evident in several locations
within the convective system and will be shown in the storm-
relative velocity data in the next section). With the ingredients
in place for deep convection, radar imagery showed persistent
development of new cells along the western periphery of the
east–west-oriented MCS as mature cells propagated eastward,
which favored ongoing strong convection to occur over the same
locations for several hours. These processes continued through-
out much of 19 September until the instability and forcing were
no longer collocated, which led to the system’s degeneration.

Some environmental characteristics associated with Imelda
on 19 September shared similarities to environments de-
scribed in previous literature on heavy rain-producing MCSs.
The presence of enhanced southerly low-level winds intersect-
ing with the decaying midlevel cyclonic circulation (which was
the remnants of Imelda in this case) accompanied by high-ue

air (not shown) to the south and west (that was also being
positively advected into the region where the MCS developed)
strongly resembled the environmental setup described in
Schumacher and Johnson (2009)’s study on quasi-stationary/
back-building convection (see their Fig. 13a). Notable differ-
ences that were found with Imelda were a more prominent
cold pool, and the zone of enhanced low-level westerlies re-
sulting from confluent northwesterly and southwesterly winds,
which were features that their results did not show. However,
a similar wind field was present in Keene and Schumacher
(2013)’s study on “bow and arrow” convection, as were some
other features that were evident in Imelda’s remnants. Com-
paring Imelda’s fields to their Fig. 25, these similarities include
1) a bowing MCS (the “bow”) that preceded the upstream de-
velopment of the “arrow,” 2) a surface cold pool, created by
the cool outflow from the bow, 3) enhanced westerly winds
that intersected the warm side of the cold pool and provided
forcing for ascent, and 4) the subsequent development of the
arrow}a linear convective feature that developed along the
cold outflow approximately parallel to the bow.

One other case that Imelda presented similarities to was
illustrated in Wang et al. (2015), where they showed that an
east–west-oriented back-building MCS developed within the
rainbands on the south side of a typhoon}perpendicular to a
terrain-induced north–south-oriented convective line. This
t-shaped zone of convection resembled the structure of Imelda’s
remnants. Further, their study showed that the quasi-stationary
back-building convective line was supported by shear driven by
northwesterly winds converging with a westerly low-level jet}
wind pattern that suggests another parallel to Imelda. It is impor-
tant to note, however, that orography also played a significant
role in their study, which was not a factor in this case.

c. Impacts

The flood-producing rainfall was the primary cause of the
damage that resulted from Imelda in southeast Texas. Al-
though the system’s slow motion contributed to the heavy
precipitation, the extreme rain rates on 19 September were
primarily responsible for the rapidly developing flash flood
event (Fig. 5). Based on the maximum rainfall that fell with
Imelda (approximately 1125 mm), the LTC became the fifth
wettest on record to impact CONUS (Weather Prediction
Center 2020), surpassing rain totals from other notorious
heavy rain–producing systems such as Tropical Storm Allison

FIG. 5. Multi-Radar Multi-Sensor (MRMS) local gauge bias-corrected quantitative precipitation estimate (QPE) for (a) 0000 UTC 16
Sep–0000 UTC 19 Sep, (b) 0000 UTC 19 Sep–0000 UTC 20 Sep, and (c) 0000 UTC 16 Sep–0000 UTC 20 Sep.
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(2001) and Hurricane Florence (2018). Imelda’s rain totals
were lower and covered a smaller geographic area compared
to Hurricane Harvey in 2017, though many of the same areas
were impacted.

The flood-producing rainfall associated with Tropical Storm
Imelda ultimately led to 5 deaths, several high water rescues,
and damage to thousands of homes (Latto and Berg 2020). In
addition to the flooding caused by Imelda, some additional
damage occurred as a result of two brief tornadoes (one rated
EF0 and one rated EF1). Economically, Tropical Storm Im-
elda was classified as a billion-dollar disaster, with damage es-
timates exceeding $5 billion (U.S. dollars) (NOAA/National
Centers for Environmental Information 2021b).

3. Data and methods

Southeast Texas is well-covered by a variety of surface-based
observing networks, offering high-quality meteorological data
from several sources. Given that surface-based observations are
often sparse, this study allows for a somewhat rare opportunity
to examine observed concurrent, collocated rotation and rain-
fall rates on finer spatial and temporal scales than have yet to
be explored in the literature. The data and methods employed
to investigate this relationship in Tropical Storm Imelda (specif-
ically, during 19 September}when the majority of the rain fell)
are detailed below.

a. Multi-Radar Multi-Sensor (MRMS) products

The MRMS system blends data from over 170 radars across
CONUS and southern Canada with data sourced from numer-
ical models, satellites, surface observing networks, and more
to create a suite of over 30 gridded products (Zhang et al.
2011; Smith et al. 2016; Zhang et al. 2016). This study uses
two MRMS products to explore the relationship between
rainfall and mesoscale/storm-scale rotation in Tropical Storm
Imelda. Specifically, the local gauge bias-corrected 1-h quantita-
tive precipitation estimate (QPE) product (hereafter, MRMS
radar-gauge QPE) is used for accumulated rainfall, and the ac-
cumulated 60-min 0–2-km rotation track product is used as a
proxy for low-level rotation (hereafter, MRMS rotation tracks).
The MRMS radar-gauge QPE product has a 1-h temporal reso-
lution, whereas the MRMS rotation tracks are available every
2 min. The products have horizontal grid spacings of 0.018
(;1 km) and 0.0058 (;0.5 km), respectively. Additional details
on these products can be found in Smith et al. (2016) and Zhang
et al. (2016).

While the MRMS system has some limitations, the products
should be appropriate to use in this work. One of the benefits
to using data from the MRMS system is that the gridded na-
ture of MRMS products provide continuous data for CONUS,
effectively filling in the gaps of datasets that are discrete or
limited in coverage (e.g., rain gauges or single radars). While
interpolation is needed to achieve this continuity, the radar-
estimated precipitation used in the MRMS QPE products has
performed well relative to surface observations during recent
extreme rainfall events in southeast Texas, such as Hurricane
Harvey (2017) and the Memorial and Tax Day floods (2015
and 2016, respectively) (Gao et al. 2021). Recent work by

Habibi et al. (2021) has shown that the MRMS QPE was
strongly correlated with surface observations during Tropical
Storm Imelda as well}particularly when accumulations were
compared over hourly time scales. Despite its overall positive
performance in heavy rainfall events over southeast Texas,
the MRMS QPE has been shown to overestimate heavy pre-
cipitation rates and underestimate lighter precipitation in the
region (Gao et al. 2021; Habibi et al. 2021). And while the for-
mulas for calculating precipitation rates in the MRMS system
have become more sophisticated by incorporating additional
variables such as specific differential phase (Zhang et al.
2020), the system relied on the much simpler reflectivity-
based algorithms (i.e., Z–R relationships) at the time of Imelda
(Zhang et al. 2016), which may have contributed to some of
these errors. Using the MRMS radar-gauge QPE (as opposed
to the radar-only QPE) should help alleviate some of these
biases, though it is worth noting that data from many of the
gauges in the region are not assimilated into the product (such
as most of those that are located in Jefferson County, Texas,
where some of the heaviest rain rates occurred during Imelda)
(Zhang et al. 2016). In addition to the limitations that exist
with the MRMS QPE data, there are some shortcomings of
the MRMS rotation track data that should also be taken into
account. One limitation that may be relevant to our study is
that the MRMS rotation tracks can become difficult to analyze
when rotating features intersect each other (such as in back-
building convection) during the hourly “accumulation” peri-
ods, since the dataset reflects the hourly maximum azimuthal
shear values for each grid point in the domain (Smith et al.
2016). In other words, the larger azimuthal shear values
from one mesocyclonic rotating feature may mask smaller
azimuthal shear values associated with a weaker rotating
feature if they intersect within the 1-h period. While Imelda
had storm dynamics where these overlaps may be a concern,
this analysis is primarily concerned with analyzing the over-
arching footprints of the MRMS rotation and MRMS QPE on
hourly time scales (rather than their behavior across sub-
hourly time frames), so this issue should not affect the goals of
this portion of the study.

Despite these limitations, the QPE and rotation track prod-
ucts from the MRMS system should still be reliable given that
the region is well-covered by two WSR-88D polarimetric
radars: KLCH in Lake Charles, Louisiana, and KHGX in
League City, Texas. Because of the close proximity to these
sensors, the lower levels of the atmosphere that are of interest
in this study are captured well by the lower radar elevation
scans, which improves the accuracy of the data. Plus, Imelda’s
remnants remained nearly stationary for much of the study pe-
riod, so issues associated with moving between areas with
greater and lesser radar coverage are largely avoided.

b. MRMS data analysis methods

Because the MRMS products used in this study}particularly
the rotation tracks}are noisy and have a finer horizontal grid
spacing than the horizontal extent of the rotation-rainfall rate
relationships that are being examined, it is crucial to apply spa-
tial averaging methods to the data. Here, two different spatial
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averaging techniques are applied to the MRMS rotation tracks
and radar-gauge QPE, with each being examined over 1-h time
steps for 0000–1800 UTC 19 September, which is when the high-
est rain rates occurred (Fig. 5). For both approaches, the two
products are overlaid and the averaging method is applied for
each 1-h period across a domain extending from approximately
28.58 to 33.08N and from 928 to 978W.

The first method (hereafter, MRMS method 1) averages
the two datasets for each 1-h period based on an accumulated
precipitation threshold within the MRMS radar-gauge QPE
product (Fig. 6a) Specifically, all grid points that exceed
32 mm h21 are selected, and a small box is “drawn” around
each grid point meeting that criterion. This threshold is used
because it is large enough to only target precipitation taking
place within the main core of the system, effectively neglecting
grid cells with low precipitation rates that are near the edge of
the domain, whose averaging boxes would include grid cells out-
side the domain. All grid points}both for the MRMS radar-
gauge QPE and overlaid MRMS rotation tracks}that fall within
each averaging box are averaged for each time stamp. Four
different averaging box sizes that are mapped to the MRMS
Lambert Conformal grid are tested, each of which equate to
cartesian areas of approximately 11 km3 12 km, 22 km3 21 km,
33 km3 33 km, and 44 km3 45 km.

MRMS method 1 allows for overlaps in the averaging
boxes, which leads to concerns of oversampling the data. To
address this matter, the second two-dimensional spatial aver-
aging method (MRMS method 2 hereafter), also uses averag-
ing boxes but does not permit overlaps between them.
Rather, the MRMS grid is coarsened independently from the

MRMS radar-gauge QPE values by evenly dividing both the
precipitation and rotation track grids for each 1-h period us-
ing averaging boxes of various sizes (Fig. 6b). The grids are
coarsened using box sizes of approximately 2 km 3 2 km,
5 km 3 5 km, and 10 km 3 10 km. For the analysis of MRMS
method 2, only averaging boxes with an area-averaged QPE
value that exceeded 4 mm and an area-averaged rotation
track value that exceeded 0.001 s21 are included, so that very
small values of the products are omitted.

The relationship between the MRMS area-averaged radar-
gauge QPE and MRMS area-averaged rotation tracks is as-
sessed for each method. To test the statistical significance of
the relationship between rainfall and rotation in the MRMS
data, 100 random averaging boxes containing the area-
averaged MRMS radar-gauge QPE and area-averaged rota-
tion track values are selected. The choice to sample the data
rather than use the full population was done because the large
size of the population yielded a very large number of degrees
of freedom and thus a very small critical value, which would
have been meaningless for assessing statistical significance.
This random selection of 100 values is repeated 1000 times for
each of the four averaging box sizes used in MRMS method
1 and 10 000 times for each of the three averaging box sizes
used in MRMS method 2. The number of iterations for ran-
domly selecting the 100 values is somewhat arbitrary, though
these numbers of iterations seemed to be sufficient when it
came to reproducing the results across multiple random seeds
for each MRMS method. For both MRMS methods, a mean
critical value is calculated across all iterations. The null hy-
pothesis is that based on the mean critical value, there is no

FIG. 6. Idealized schematic demonstrating (a) Multi-Radar Multi-Sensor (MRMS) method 1 and (b) MRMS method 2 as described in
the text. MRMS local gauge bias-corrected quantitative precipitation estimate (QPE) is shown as the filled contours, and MRMS 1-h accu-
mulated 0–2-km rotation tracks are shown as dashed contours. Magnitudes of the QPE and rotation are shown in the legend. MRMS local
gauge bias-corrected quantitative precipitation estimate grid points (1-km spatial resolution) are indicated by black boxes with crosses,
and averaging boxes (shown here for a spatial resolution of approximately 5 km) are indicated by red boxes.
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correlation between the MRMS radar-gauge QPE and the
MRMS rotation tracks.

c. Polarimetric radar and rain gauge comparison

There are two dense networks of rain gauge sites in south-
east Texas: one in Jefferson County (which includes the city
of Beaumont) and one in Harris County (which includes the
city of Houston) (Fig. 7a). After filtering out stations reporting
erroneous data, the two networks comprise nearly 250 sites that
report precipitation observations every 5 min.

As was shown in section two, the most extreme precipita-
tion rates during Imelda took place throughout 19 September,
which is also reflected in the hourly rainfall rates1 of the gauge
sites (Fig. 7b). Filtering the data to only include gauges that
reported rain rates in excess of 100 mm h21}a threshold
comparable to previous studies that have used high-resolution
precipitation datasets (Nielsen and Schumacher 2020a)}
Fig. 7b shows that the Jefferson County sites meeting this
criteria (n 5 11) recorded extreme precipitation rates for a lon-
ger period than the Harris County sites (n5 17). This difference
is due to the increased translational speed of the system toward
the end of the period. Thus, to capture a longer observation pe-
riod and maintain similar radar coverage quality among the sites,
further analysis is restricted to only the Jefferson County sites.

After collecting the 5-min precipitation data for the 11 gauge
sites, the sites are each centered within their own unique
domain of size 60.158 latitude and 60.178 longitude relative to
their geographic coordinates, with each area equating to ap-
proximately 33 km 3 33 km. This sized area proved to be best
suited for monitoring storm-scale rotation after testing larger
and smaller areas. Level II reflectivity and storm-relative veloc-
ity data from the Houston–Galveston NEXRAD WSR-88D
polarimetric radar (KHGX) are then overlaid across each of

the 11 domains for the period when the most extreme rain-
fall rates were reported by the gauges (i.e., 0000–1400 UTC
19 September, Fig. 7b). This process yielded a total of 1067
radar images.

The images are then each paired with their respective gauge
observations for all time stamps in the 14-h period. Because
the temporal resolution of the radar and gauge observations
is different (i.e., archived radar imagery was available every
8–9 min while gauge data were available every 5 min), the
pairings are irregular in time. Thus, each radar frame is paired
with the gauge observation that most closely followed the ra-
dar time stamp (e.g., if the radar image showed data for 1018
UTC, the gauge observation taken at 1020 UTC would be
matched with that particular image). For radar images that
shared a time stamp with a gauge observation, the gauge read-
ing that occurred 5 min after the radar time stamp is used in
an effort to account for a time lag between the rotational be-
havior aloft and the surface precipitation.

After pairing the radar and surface rainfall observation
time stamp, each image is subjectively classified into one of
two categories, “rotation images” or “nonrotation images,”
based on the appearance of the KHGX reflectivity and veloc-
ity data within each ;33 km 3 33 km domain. Embedded
rotation was permitted to occur anywhere within the image do-
main and did not necessarily have to be directly located over the
gauge site. To mitigate human error as much as possible, each
image is analyzed at least three times. To be conservative with
identifying rotation, images where the embedded rotation signa-
tures in the velocity products were weak or located on the cusp
of the domain and/or in areas with weak reflectivity returns
(,;20 dBZ) are classified as nonrotation images. An example
of a rotation versus a nonrotation image is shown in Fig. 8.

The rainfall rates associated with the rotation versus the non-
rotation images are compared using basic statistics, and these
differences are tested for significance using the Wilcoxon
signed-rank test. This statistical test is appropriate for our analy-
sis because it can be used to compare the two distributions of

FIG. 7. (a) Locations of rain gauge sites for the Harris County (purple) and Jefferson County (orange) networks and (b) hourly precipi-
tation for networks’ gauges that received over 100 mm h21 during at least one hourly period from 0000 UTC 17 Sep to 0000 UTC 21 Sep
2019. Note that in (b) only 60-min periods that begin at the top of an hour and end at the bottom of an hour (e.g., 0500–0600 UTC) are
considered. In (b), hourly data from individual gauges are shown as thin lines, and hourly mean data among the individual sites are shown
as bolded lines.

1 Hourly rainfall rates are defined as observations beginning
at the top of an hour and ending at the bottom of an hour (e.g.,
0000–0100 UTC).
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nonparametric, independent2 data (Wilcoxon 1946; King and
Eckersley 2019), which are both true of our data. In essence,
the Wilcoxon signed-rank test takes the differences between
paired data, ranks the positive and negative differences (sepa-
rately) according to the absolute value of the magnitude of
those differences. The sum of the positive ranks is used to calcu-
late the test statistic using the following equation:

z 5
w 2

N(N 1 1)
4�������������������������������

N(N 1 1)(2N 1 1)
24

2 t

√ 5
w 2 m

s 2 t
, (2)

where z is the test statistic, w is the sum of the positive ranks, N
is the number of pairs with a nonzero difference, m is the mean,
s is the standard error, and t is a correction factor for tied ranks.

Because the number of rotation images and number of
nonrotation images are not equal, the mean test statistic
and mean p value of 100 000 randomized pairs3 of rainfall

observations following rotation and nonrotation images are
computed, with each sample of pairs being equal to the
length of the shorter dataset (which happens to be the rain-
fall observations following the nonrotation images). Using a
significance level of a 5 0.01 in this one-sided test, the null
hypothesis is that the median of the differences between the
precipitation observations following the rotation images
and those following nonrotation images is less than zero
(i.e., more rain fell after nonrotation images, rather than af-
ter rotation images), and the alternative hypothesis is that
this difference is positive.

The basic statistics and Wilcoxon signed-rank test are per-
formed twice: once for the full set of rainfall observations fol-
lowing all 1067 radar images and once for a smaller dataset,
where the 5-min precipitation observations that reported zero
rainfall are removed (n 5 859). Hereafter, the former dataset
will be referenced as “all_data,” and the latter will be referred
to as “no0_data.”

d. Horizontal distance dependency between rotation and
rainfall rates

To further expand the subjective analysis portion of the
study, the relationship between horizontal distance between
the radar-identified rotation and the amount of rain that fell
at nearby gauges is examined. A smaller time period within
Imelda is used to explore this theory, and the goal is to

FIG. 8. Example of a rotation image showing embedded rotation within convective precipitation based on (a) reflectivity and (b) storm-
relative velocity from the Houston–Galveston radar (KHGX) at gauge site 3300 in the Jefferson County gauge network at 0244 UTC 19 Sep.
This is contrasted with (c) KHGX reflectivity and (d) storm-relative velocity for a nonrotation image at the same gauge site. The
black dot in the center of (a)–(d) is the gauge site, and the location of the radar relative to the gauge site is shown in (a). (e),(f) The
5-min precipitation observations from the gauge site (black line) with the time of the radar images corresponding to (a) and (b) in
(e) and (c) and (d) in (f), annotated as a red dashed line.

2 The results section illustrates that the data are nonparametric,
and independence is validated by performing the Mann–Whitney
U test (an analogous test that assumes non-independence) on the
dataset: this test yielded greater statistical significance than the
Wilcoxon signed-rank test, implying that independence was a con-
servative assumption.

3 This number of samples produced results that were nearly
identical across multiple random seeds.
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investigate two aspects of this distance dependency. First,
changes in the 5-min rainfall rates across varying horizontal
distances from the center of an embedded rotating feature are
examined. Second, the effects that constraining the distance
threshold between the gauge site and the center of rotation
have on the magnitude of the relationship between rotation
and rainfall rates are explored.

First, radar reflectivity and velocity are used to subjectively
identify the approximate center of one of the long-lasting
rotating features that occurred between 0152 and 0326 UTC
19 September (according to the radar time stamps). This time
frame is selected for two reasons. First, this roughly 90-min
time period was within the 14-h period of intense rainfall that
is used in the broader radar and rain gauge analysis described
above, so the processes that were evident on radar at that
time were already familiar. Second, 10 of the 11 Jefferson
County gauges that the 5-min data are pulled from were consid-
ered to be associated with rotation for that entire period based
on the first analysis: this factor allows for rotation to be held
constant while varying only the distance between the gauge and
the rotation center and also offers comparison of a large num-
ber of gauges over the same time period.

As was done with the larger subjective radar and rain gauge
analysis, the 5-min gauge observations that most closely fol-
lowed the radar time stamp are paired with each radar image
(i.e., gauge readings between 0155 and 0330 UTC). For each
radar time stamp, the horizontal distance between each of
the 10 gauge sites and the approximate rotation center on
radar are calculated. This process yielded 120 values (i.e.,
12 observation periods of 5 min each paired with the radar im-
ages across 10 gauge sites) that are used to compare rainfall
amounts versus distance of the gauge from the center of rotation.

For the second portion of this part of the study, a sensitivity
analysis on the horizontal distance threshold between gauge
and rotation for differentiating between rotation images and
nonrotation images is conducted. The objective is to examine
how the relationship between rotation and rainfall changes

depending on how large of a constraint is placed on the dis-
tance between them. To do so, the 1-h precipitation rates that
were recorded across all 72 Jefferson County gauge sites be-
tween 0200 and 0300 UTC 19 September}a time frame that
is encapsulated by the 90-min period described above}are
examined. During this period, the mean location of the center
of the rotating feature of interest is calculated across the radar
images, and then the distance between the mean rotation cen-
ter and each of the gauge sites is determined. From there,
eight different thresholds are applied to test the sensitivity of
the distance for which a gauge is considered to be near rota-
tion or not. The horizontal distance thresholds tested are 2, 4,
7, 10, 16.5, 20, 25, and 35 km}i.e., four smaller and three
larger thresholds than the one used in the full radar and rain
gauge analysis (which was 16.5 km for the 33 km 3 33 km
boxes and is also tested here). For each threshold, gauges that
are closer to the mean center of rotation than the threshold
are considered to be associated with rotation images whereas
gauges that are further from the mean rotation center are
grouped with nonrotation images. The differences in the
amount of rain that fell with rotation versus without rotation
are examined across the different thresholds.

4. Results and discussion

a. MRMS analysis

1) SPATIAL TRENDS

Overlaying the hourly MRMS radar-gauge QPE and rota-
tion tracks suggests that throughout the 18-h period, areas
with high rotation track values tended to occur close to areas
of locally heavy accumulated rainfall (Fig. 9). Many of these
rotating features remained over the same locations for several
hours as extreme rainfall rates continued. These two variables
tended to be maximized in two locations: one within the
north–south-oriented bowing structure near the Texas–Louisiana

FIG. 9. Examples of the overlaid (noncoarsened) Multi-Radar Multi-Sensor (MRMS) 1-h quantitative precipitation estimate
(QPE; shaded; mm) and area-averaged MRMS 1-h accumulated 0–2-km rotation track (contoured) products at (a) 0900, (b) 1200,
and (c) 1500 UTC 19 Sep. In (a), the inset figure on the bottom left illustrates a zoomed-in portion of the main figure, which is
outlined by the black box.
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border and the other in the back-building line in the form of mul-
ticellular structures.

2) SPATIAL CORRELATIONS

Beginning with MRMS method 1, 51 276 total grid cells
exceed 32 mm h21 in the 1-h MRMS radar-gauge QPE prod-
uct within the established spatiotemporal domain. The two-
dimensional histograms of the area-averaged hourly MRMS
radar-gauge QPE and area-averaged MRMS rotation tracks
show a positive correlation between the two variables (Fig.
10). This relationship is present regardless of the sizes of the
averaging boxes that are used to conduct the spatial averag-
ing, though as the size of the averaging boxes increases, the
correlation coefficient r also increases. This is not surprising,
given that as the averaging boxes become larger in size, there
is more overlap between the boxes, so the spatial averages
calculated among them become more similar. When the
smallest averaging box size, 11 km 3 12 km, was used, most
of the averaging boxes had an area-averaged radar-gauge
QPE value between 25 and 60 mm h21 and an area-averaged

rotation track value between 0.5 3 0.001 and 4.5 3 0.001 s21

(Fig. 10a). When this smallest averaging box size is used, the
range within which the greatest density of area-averaged val-
ues fall within the two-dimensional distribution is not highly
linear (consistent with the positive, but relatively small r value,
Fig. 10a), but the linearity does become more apparent as the
averaging box size is increased (Figs. 10b–d).

As the size of the averaging boxes increases, the magni-
tudes of the spatially averaged MRMS radar-gauge QPE and
MRMS rotation tracks become less extreme (Fig. 10). This
trend exists because the isolated extreme values begin to get
averaged-out as additional, less extreme grid points are aver-
aged together. This result is evident in the correlation coeffi-
cients, with the r values of the averaging boxes of size 11 km 3

12 km, 22 km3 21 km, and 33 km3 33 km being 0.33, 0.42, and
0.51, respectively. By the time the box size is ;44 km 3 45 km
(Fig. 10d), an r value of 0.57 is reached, and the maxima of the
area-averaged MRMS radar-gauge QPE and area-averaged
MRMS rotation tracks are approximately 55 mm h21 and
4.5 3 0.001 s21 respectively, which were characterized more

FIG. 10. Two-dimensional histograms of area-averaged Multi-Radar Multi-Sensor (MRMS) 1-h local gauge
bias-corrected quantitative precipitation estimate (QPE; mm) and area-averaged MRMS 1-h accumulated 0–2-km
rotation tracks calculated from horizontal domains of approximate sizes of (a) 11 km 3 12 km, (b) 22 km 3 21 km,
(c) 33 km 3 33 km, and (d) 44 km 3 45 km as described by MRMS method 1. Note the differences in scale on the
color bars and axes. The number of horizontal domains being sampled (which is based on the number of QPE grid
points that are greater than 32 mm h21) are annotated with the r and r2 values for each domain size.
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as midrange values when the averaging boxes were smaller
(e.g., Fig. 10a).

Analyzing the results of the MRMS method 2 reveals that
there is still some positive relationship between the area-averaged
MRMS rotation tracks and the area-averaged MRMS radar-
gauge QPE, though the correlations are much weaker than those
that were found with MRMS method 1 (Fig. 11). As with the first
method, the correlation between the area-averaged MRMS QPE
and area-averaged MRMS rotation tracks increases as the grid
becomes coarser: using this approach yields r values of 0.32, 0.36,
and 0.4 for averaging box sizes of 2 km 3 2 km, 5 km 3 5 km,
and 10 km3 10 km, respectively. Because the oversampling issue
is alleviated with MRMS method 2, it is not surprising that these
relationships are not as prevalent, since the values of the averag-
ing boxes being analyzed with this second method will undoubt-
edly be less similar to each other.

The results of the statistical significance testing show that
all mean calculated critical values were statistically signifi-
cant at the p 5 0.01 level, except for the 2 km 3 2 km and
11 km 3 12 km averaging boxes (which had critical values of
0.02 and 0.012, respectively; Table 1). Thus, these values in-
dicate that for the majority of the averaging boxes, the null
hypothesis would be rejected, suggesting that there is some

correlation between the MRMS radar-gauge QPE and the
MRMS rotation tracks. The mean critical values quickly become
smaller as the averaging box size increases. For instance, the
critical values associated with the largest averaging box sizes
are several orders of magnitude smaller than those that were
calculated for the smaller averaging boxes (e.g., 2.79 3 1025

for the 33 km 3 33 km averaging boxes and 2.87 3 1026 for
the 44 km 3 45 km averaging boxes). Thus, the magnitudes
of the critical values seem to reflect the strength of the linear
relationship between the MRMS radar-gauge QPE and the
MRMS rotation tracks, which varied across averaging box
sizes.

While there are similarities among the results of the two
methods, there are a few notable differences. For one, it ap-
pears that the majority of the area-averaged values are cen-
tered in the lower left-hand corner of the plots for MRMS
method 2 (Fig. 11), demonstrating that the majority of the
area-averaged QPE and area-averaged rotation values tended
to be relatively small. These smaller values are responsible for
much of the strong positive correlation, for the data become
less correlated as smaller values are removed (not shown).
Additionally, MRMS method 1 shows a clear absence of high
area-averaged QPE/low area-averaged rotation (and vice versa),
suggesting that some amount of rotation was always present
when the most extreme area-averaged rainfall occurred. How-
ever, this feature is not prevalent in the plots associated with
MRMSmethod 2, which limits the validity of that finding.

To summarize, while both averaging approaches suggest
some positive association between area-averaged QPE and
area-averaged rotation in the MRMS data captured during
Imelda, the magnitude of the relationship between these two
variables is not consistent among the two methods. First, MRMS
method 1 suggests that on multiple spatial scales, there is a well-
defined, positive correlation between low-level rotation and rain-
fall rates on hourly time scales in Tropical Storm Imelda. This
finding is consistent with the relationships gleaned between me-
soscale rotation and rainfall in other radar observation-based
datasets (e.g., Brauer et al. 2020; Nielsen and Schumacher 2020a).

FIG. 11. Two-dimensional histograms of area-averaged Multi-Radar Multi-Sensor (MRMS) 1-h local gauge bias-corrected quantitative
precipitation estimate (QPE; mm) and area-averaged MRMS 1-h accumulated 0–2-km rotation tracks calculated from coarsened grids
with horizontal resolutions of (a) 2, (b) 5, and (c) 10 km as described by MRMS method 2. Only coarsened grid boxes that have an area-
averaged 1-h QPE greater than 4 mm and an area-averaged 1-h accumulated rotation track greater than 0.001 s21 are included. Note the
differences in scale on the color bars and axes.

TABLE 1. Mean correlation coefficient and mean critical values
across 1000 iterations (for MRMS method 1 averaging boxes)
and 10000 iterations (for MRMS method 2 averaging boxes).

Averaging box size
MRMS
method

Mean
correlation
coefficient

Mean
critical
value

2 km 3 2 km 2 0.32 0.02
5 km 3 5 km 2 0.36 0.009
10 km 3 10 km 2 0.4 0.003
11 km 3 12 km 1 0.33 0.012
22 km 3 21 km 1 0.42 0.0015
33 km 3 33 km 1 0.51 2.79 3 1025

44 km 3 45 km 1 0.57 2.87 3 1026
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While the findings from MRMS method 2 do not contradict this
relationship, they do imply a much weaker relationship between
rotation and rainfall, which raises questions as to how significant
that association is. Second, the results using MRMS method 1
suggest that strong area-averaged values of either rotation or rain-
fall rates do not tend to be present without moderate to strong
values of the other, indicating that there may be some amount of
codependency between extreme values of these variables. How-
ever, this relationship was not present in the dataset when
MRMS method 2 was applied, which illuminates the need to in-
vestigate further.

b. Radar and rain gauge analysis

1) SUBJECTIVE ANALYSIS

When all 1067 subjectively analyzed radar images (all_data)
are considered, 616 radar images (57.73%) were found to have
rotation while 451 (42.27%) were determined to have no rota-
tion present (Table 2). Of these 1067 images, approximately
20% (208) of the 5-min rainfall observations associated with
them show records of zero precipitation, 91 of which were as-
sociated with rotation and 117 without. In almost all cases,
these recordings of zero precipitation were not because there
was no hydrometeor-related reflectivity present in the domain
around the gauge site, but rather it was because either 1) the
precipitation did not occur right over the gauge or 2) the tem-
poral mismatch between the radar image and gauge observa-
tion “missed” when the rain fell. Removing images associated
with precipitation observations of zero leaves 525 rotation im-
ages and 334 nonrotation images that recorded nonzero 5-min
rainfall observations, which represent 61.12% and 38.88% of
no0_data, respectively (Table 2).

Examining the 5-min rainfall observations for all_data
shows that the mean and median precipitation observed after
rotation images are 5.1 and 4.1 mm, respectively, which are
approximately 1–1.5 mm higher than the rainfall following
nonrotation images in all_data (Figs. 12a,b). Both distribu-
tions are strongly skewed right, showing that most of the

5-min precipitation observations in the dataset are small,
while the more extreme readings are rarer. Boxplots confirm
this assessment: approximately 75% of the observations fall at
or below 8 mm for the rotation images compared to 5 mm for
the nonrotation images (cf. Figs. 12a,b). The observations fol-
lowing nonrotation images are heavily weighted by the zero
observations, as shown by the 25th percentile value of 0 mm.
Meanwhile on the upper end of the distributions, the most
extreme precipitation rates tended to occur after rotation im-
ages rather than nonrotation images. In fact, the outlier obser-
vations following nonrotation images actually fall within the
90th percentile of observations following rotation images
(which is approximately 16 mm).

When “zero” observations are removed (no0_data), the right-
skewness is still apparent in both distributions of rainfall obser-
vations following rotation and nonrotation images (Figs. 12c,d).
Removing observations of 0 mm reduces the standard deviation
slightly for the distributions of observations that follow rotation
and nonrotation images compared to when those observations
were included (cf. Figs. 12a,c,b,d). This is also evident in the
shrinking of the interquartile ranges, which results from the 25th
percentile increasing and the 75th percentile decreasing.

Though the magnitude of the differences in the observa-
tions following rotation images and the observations following
nonrotation images may appear small, these differences be-
come much more important when they are compounded over
time. Over the 14-h period, the 5-min rainfall accumulations
that were analyzed alongside the radar images totaled approx-
imately 4662 mm across the 11 gauges. Of this total precipita-
tion, 3131 mm of it fell in the minutes after embedded rotation
occurred. In other words, over two-thirds of the rainfall that
was included in the analysis fell when rotation was identified
in close proximity to the gauge. Even when scaled by the num-
ber of observations, the total precipitation following rotation
images was 1914 mm, compared to 595 mm for the total rain-
fall following nonrotation images, further emphasizing that
rain rates tended to be higher when rotation was present.

In general, the rotation-associated rainfall rates recorded
by the Jefferson County gauges appear to be comparable to
rain rates that have been documented by gauges during conti-
nental convection with rotating storm-scale features. For in-
stance, Smith et al. (2001) described two supercell cases, one
in Orlando, Florida, and one in Dallas, Texas, where gauges
recorded maximum rainfall rates of 222 and 231 mm h21 on
5-min time scale, respectively. These rates are very close to
the maximum 5-min rain rate of approximately 244 mm h21

that was recorded by a gauge site during Imelda. On hourly
time scales, maximum gauge-recorded rain rates across differ-
ent supercell cases have varied quite a bit, from 75 mm h21 up
to over 140 mm h21 (e.g., Doswell 1998; Smith et al. 2001;
Nielsen and Schumacher 2020a), the upper end of which is com-
parable to Imelda’s hourly gauge maximum of 165 mm h21. We
can also compare these gauge-recorded rain rates to the Tax
Day (2016) flooding event: a nontropical cyclone event that was
captured in part by the Harris County, Texas, rain gauge net-
work that was alluded to previously (Nielsen and Schumacher
2020b). Unlike the aforementioned supercell cases, the Tax
Day flooding event featured a mesoscale convective system

TABLE 2. Cross tabulation of 5-min rainfall observations
following nonzero precipitation images (no0_data), zero precipitation
images, and all images (all_data) based on whether or not the image
contained subjectively identified rotation. Row-wise and column-wise
percentages are also computed against the total number of images.

Nonzero
images Zero images All images

Rotation images 525 91 616
(row %) (85.23%) (14.77%) (100%)
(column %) (61.12%) (43.75%) (57.73%)

Nonrotation
images

334 117 451

(row %) (74.06%) (25.94%) (100%)
(column %) (38.88%) (56.25%) (42.27%)

Total images 859 208 1067
(row %) (80.51%) (19.49%) (100%)
(column %) (100%) (100%) (100%)
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with embedded rotating features, which draws similarities to
Imelda. In their study, Nielsen and Schumacher (2020b),
showed that a maximum rain rate of 328 mm h21 (on a 5-min
time scale) was captured by the gauge network during that
event, and while this value is obviously larger than the gauge-
maximum recorded during Imelda, the widespread 5-min rain
rates of 60–120 mm h21 that were captured during the 2016 Tax
Day flood are very comparable to the 5-min rain rates docu-
mented by the gauges during Imelda.

In general, while the findings show that the 5-min rainfall ob-
servations taken during Imelda did not individually differ much
between when rotation was present versus not, the small differ-
ences accumulated quickly over time, illustrating that rotation
may have played a significant role in enhancing surface rainfall.
This finding is consistent with previous work involving model-
ing, which have shown that mesoscale rotation can locally in-
crease rainfall rates through dynamic processes (e.g., Nielsen
and Schumacher 2018, 2020b). It also agrees with observational
studies that have identified positive associations between rain-
fall rates and mesoscale rotation on hourly time scales (e.g.,
Brauer et al. 2020; Nielsen and Schumacher 2020a,b).

2) STATISTICAL SIGNIFICANCE

The mean of the positive rank sums (w) calculated from the
100 000 random-paired samples are approximately 56 900 and

30 500 for all_data and no0_data, respectively, and their distri-
butions are shown in Fig. 13. Following the methods of the
Wilcoxon signed-rank test, we use this distribution of positive
rank sums to test the significance of the data by calculating
the mean test statistics (z) with Eq. (2) by taking the means of
means (m) and mean standard errors (s) according to the
mean number of nonzero paired differences (N) for the
100 000 samples taken from all_data and no0_data.

The results of the test show that the null hypothesis can be
rejected in both all_data and no0_data. That is, there is signifi-
cant evidence in both datasets to support the claim that the
median of the differences between the rainfall rates following
the rotation images and the rainfall rates following the nonro-
tation images is not negative: more rain tended to fall when
rotation existed. To expand further, the significance test
places the means of the positive ranks at approximately 6.4s
(for all_data) and 4.8s (for no0_data) above m in the distribu-
tions of rank sums (Fig. 13), which corresponds to p values of
approximately 6 3 1026 and 1 3 1029 for no0_data and
all_data, respectively (Table 3). These p values are much
smaller than the critical value of 0.01, which leads to the rejec-
tion of the null hypothesis. As such, the results of the
Wilcoxon signed-rank test are consistent with the alternative
hypothesis: the median of the signed paired differences is not
less than zero, but rather, is greater than zero. This finding

FIG. 12. Histograms and boxplots showing the distribution of 5-min precipitation values from 11 Jefferson County,
TX, gauge sites in the minutes following radar images (a),(b) when all images are considered and (c),(d) when images
that precede nonzero rainfall observations are removed. (top) The 5-min precipitation accumulations that follow im-
ages containing rotation and (bottom) the 5-min accumulations when nonzero observations are removed. Basic statis-
tics for each distribution are also annotated. Note the differences in scale on the y axes.
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suggests that in the data, there is a significant positive differ-
ence in the 5-min gauge rainfall for observations that follow
rotation versus those that do not follow rotation, regardless of
whether zero precipitation values are included or not.

3) DISTANCE DEPENDENCY OF ROTATION

AND RAINFALL

Examining the 5-min rainfall rates of the 10 Jefferson
County gauges versus their distance from the approximate
center of the rotating feature over the roughly 90-min period
on 19 September suggests a weak negative relationship be-
tween the two variables, with an r value of 20.24 (Fig. 14).
That is, there is a subtle indication that rain rates tended to be
greater when the gauge site was located closer to the center of
the rotating feature, but the signal is quite weak. The majority
of the rain rates on the far upper end of the distribution (e.g.,
greater than 10 mm in 5 min) did occur at relatively short dis-
tances from the approximate center of the embedded rotation
(Fig. 14), but there are also several very low rain rates (e.g.,
less than 4 mm in 5 min) that were also within only a few

kilometers of the center of the rotating feature. This pattern
in the most extreme rainfall rates detected in Imelda is consis-
tent with both the results from MRMS analysis and the sub-
jective radar and rain gauge analysis.

When the 5-min rain rates from the 10 gauges are aggre-
gated over the 0155–0330 UTC period, the strength of the
negative relationship between distance and total precipitation
increases (according to the calculated r value of 20.67, not
shown). This finding builds on our previous analysis to suggest
that rainfall rates not only compound quickly over time, but
when rotation is very close to the gauge site, the effect may be
even more profound.

Last, testing the sensitivity of the threshold for the horizon-
tal distance between the gauge and the center of the rotating
feature of interest for the 0200–0300 UTC 19 September pe-
riod yields interesting results. Increasing the distance thresh-
old by just a few kilometers very quickly increases the
number of gauges that are considered to be associated with
rotation, as is evidenced by this value more than tripling when
the threshold is increased from 4 to 10 km (Fig. 15a). Compar-
ing the means of the 1-h precipitation rates associated with

FIG. 13. Mean probability distributions of the positive rank sums using a normal approximation based on the mean
of means and mean of standard deviations from the 100000 randomly paired rainfall observations following rotation
and nonrotation images for all images (all_data, turquoise) and nonzero images only (no0_data, tan). Distributions
are shown for 65 mean standard errors (s), with63s shaded and labeled. The mean of means m is also noted as dot-
ted lines and annotated in the top-left corner with the mean number of nonzero pairs (N) determined through the
100000 random pairs that were analyzed. The critical rank sum values corresponding to a significance of a 5 0.01 are
shown as gray dashed lines. The mean rank sum values corresponding to the mean test statistics from the 100 000 ran-
dom pairs are shown as tan and turquoise dashed lines for no0_data and all_data, respectively. Note m and s are
calculated using Eq. (2).

TABLE 3. Mean values of the sum of the signed ranks (rounded to the nearest 100), mean test statistics (calculated from the mean
sum of positive signed ranks), and corresponding mean p values resulting from the 100000 random pairs of rainfall observations
following rotation images and nonrotation images when all images (all_data) and only nonzero images are analyzed (no0_data).

Mean sum of positive
signed ranks

Mean (absolute value)
sum of negative signed

ranks

Mean Wilcoxon
signed-rank test

statistic Mean p value

All images 56 900 26 500 6.4 1 3 1029

Nonzero images only 30 500 15 800 4.8 6 3 1026
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rotation to the means of the 1-h precipitation rates associated
with no rotation over the varying distance thresholds shows
that the biggest differences tend to occur when the threshold
was very small (Fig. 15b). This slope seems to be evident both
when zero rainfall observations were included as well as when
they were excluded. It is also worth noting that by the time
the threshold reaches 10 km or larger, the difference between
gauges associated with rotation versus gauges not associated
with rotation changes very little.

Together, while the analysis period is short, these results
suggest that there may be some nonlinear distance depen-
dency with regards to the horizontal radius of influence that
embedded rotation may have on precipitation rates within a
larger convective system. They also suggest that these rainfall
enhancements may be greatest over distances of only a few
kilometers or less. However, more work is needed to quantify
how wide the horizontal distances are over which rotation can

influence rainfall rates, and other factors that may affect this
relationship should also be explored (e.g., the horizontal ex-
tent of the rotation, the magnitude of the rotation, the convec-
tive mode, etc.).

c. Limitations

There are a few limitations with this study that should be
addressed, beginning with the downsides of using only one
LTC in these analyses. Because this is a case study, broader
generalizations about observations of embedded rotation and
extreme rainfall in LTCs cannot be made. Moreover, Tropical
Storm Imelda was a relatively weak, short-lived TC, and its
most extreme rainfall occurred when the system had been re-
duced to remnants. This means that while the relationship be-
tween embedded rotation and rainfall rates shown here may
translate to other LTCs that evolve into disorganized rem-
nants, the relationship of these two mechanisms in LTCs with
better-developed structures remains outside the scope of this
work.

There are also some aspects of our methods that are worthy
of discussion. In the analysis involving the MRMS data, one
area of concern involves autocorrelation between the area-
averaged MRMS rotation tracks and MRMS radar-gauge
QPE values over time. While some autocorrelation should be
expected, this topic presents a limitation, particularly when
overlaps are permitted among the averaging boxes. Addition-
ally, while the precipitation threshold used in this study was
informed by previous observational studies on heavy rainfall
[viz., the threshold’s relationship to average recurrence intervals
and urban flooding, see Nielsen and Schumacher (2020a)’s meth-
ods for more details], adjusting this value can yield different re-
sults. For instance, setting the threshold too high introduces a
smaller sample size (and in general reduces the relationship be-
tween the two variables). On the other hand, setting the thresh-
old too low enhances the effects of zero precipitation values that
extend beyond the small rainfall rates that are typically on the

FIG. 14. Distance of the gauge site from the center of the rotating
feature vs 5-min precipitation rates for 10 Jefferson County gauges
across radar time stamps 0152–0326 UTC 19 Sep 2019. Mean dis-
tances between the gauge and center of rotation, mean 5-min pre-
cipitation rates, and the r value representing the correlation coeffi-
cient are annotated.

FIG. 15. During the 0200–0300 UTC 19 Sep period, (a) number of gauges associated with rotation (light blue) vs number of associated
with nonrotation (navy blue) based on varying horizontal distance thresholds, and (b) mean 1-h precipitation for gauges with rotation
(light blue with circle markers) and mean 1-h precipitation for gauges without rotation (navy blue with circle markers) across varying hori-
zontal distance thresholds. In (b), the mean values of 1-h precipitation with and without rotation at varying horizontal thresholds are also
shown when zeros are removed (lightest blue with square markers and lighter navy with square markers for rotation and nonrotation, re-
spectively). The orange dashed line in (b) shows the difference between the nonzero mean precipitation with rotation and nonzero mean
precipitation without rotation.
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periphery of precipitating systems; this introduces more zero
rainfall/zero rotation values and likely overestimates the relation-
ship between the two processes.

A final limiting aspect of this work involves the time scales
associated with the paired radar images and the 5-min rainfall
observations. Our methods weighted observations that oc-
curred anywhere between 1 and 5 min after the radar image
equally. As a result, some 5-min observation periods for the
precipitation may have begun several minutes before the time
of the radar image, while others may have occurred entirely
after the radar image was captured. Additionally, some 5-min
observations were neglected entirely if they fell between cer-
tain radar time stamps (e.g., the 0225 UTC gauge observation
would be neglected for radar scans occurring at 0218 and
0226 UTC). While our analysis using a 5-min temporal resolu-
tion is an improvement from the hourly time scales used in
previous work on this topic (e.g., Brauer et al. 2020; Nielsen
and Schumacher 2020a), these issues may complicate the abil-
ity to draw comparisons.

5. Summary and conclusions

This study utilized remote data (from radar) and in situ ob-
servations (from rain gauges) to evaluate and quantify the rela-
tionship between embedded rotation in the lower atmosphere
and surface precipitation rates through a case study of Tropical
Storm Imelda. Broadly, these findings suggest that in this sys-
tem, there was a positive, statistically significant relationship be-
tween low-level meso- to storm-scale rotation and rainfall rates.
That is, more rain tended to fall when there was embedded
rotation present in Imelda’s convection.

First, in the synoptic and mesoscale analysis, the general
evolution of Tropical Storm Imelda was discussed and the in-
gredients that favored heavy to extreme rain rates in the sys-
tem’s remnants were described. The TC made landfall as a
tropical storm on 17 September 2019 along the western Gulf
Coast of the United States. The slow-moving system brought
moderate rainfall to western coastal Texas and southern Loui-
siana for roughly 36–48 h. Imelda’s remnants then evolved
into a quasi-stationary back-building MCS around the start of
19 September, bringing extreme rain rates in excess of 100 mm
h21 to a localized area of western Texas, which already had satu-
rated soils from rain that fell over the previous days. These ex-
treme rain rates persisted for several hours, creating localized
but impactful flooding in some locations. A combination of
the following processes favored this heavy rainfall:

1) sustained ambient moisture from Imelda plus ongoing
moisture advection,

2) ample surface-based instability and deep warm cloud
depths to favor warm rain processes,

3) a confluent low-level wind field that enhanced vertical
wind shear and aided storm organization, and

4) a surface cold pool that served as a mechanical lifting
mechanism for vertical forcing for ascent.

In the first analysis that was conducted to examine rotation
and rainfall, the 0–2-km rotation track and local gauge bias-
corrected radar-estimated 1-h QPE products from the MRMS

system were used to investigate the relationship between
meso- to storm-scale rotation and rainfall rates. To do so, two
spatial-averaging approaches to soften the 0.5–1-km grids
to a more appropriate scale (ranging from ;2 km 3 2 km
to ;44 km 3 45 km) were applied over an 18-h period on
19 September. This approach led to three key findings. First,
there were several locations with persistent rotating features
that lasted on the order of up to several hours and tended to
be closely collocated with areas of heavier accumulated rain-
fall. Second, there was a positive spatial correlation between
area-averaged hourly QPE and area-averaged hourly accumu-
lated rotation tracks: a finding that was consistent across
multiple spatial scales. Last, our results show that it was un-
common for low values of area-averaged rotation to be col-
located with high values of area-averaged QPE (or vice versa),
suggesting a codependency between the two variables.

For the second analysis, 5-min rainfall observations from
surface gauges were paired with radar images that were sub-
jectively analyzed for rotation (or nonrotation) on spatial
scales no larger than 20 km. Of the 1067 radar images that
were subjectively analyzed near the 11 gauge sites from 0000
to 1400 UTC 19 September 2019, approximately 58% of the
images contained embedded rotation. Basic statistics showed
that 5-min rainfall rates that were paired with rotation images
tended to be greater on average [by approximately 1 mm
(5 min)21], and the more extreme observations on the upper
end of the distribution tended to be associated with rotation
images (rather than nonrotation images). Though these differ-
ences may appear small in magnitude, they compounded
greatly over time: aggregating the 5-min rainfall data included
in the analysis showed almost twice as much rain fell when
rotation was present compared to when rotation was not pre-
sent. Using the Wilcoxon signed-rank test, this difference was
statistically significant. Last, a brief exploration of the hori-
zontal distance dependency between the rotation rates and
the rainfall rates at gauge sites was provided. These results
showed a weak negative association between horizontal dis-
tance and rainfall rates at the gauges on 5-min time scales.
However, when horizontal distance between the gauge and
rotation was highly constrained, the rainfall rates tended to be
most extreme compared to gauges that were located only
slightly further from the rotation center. This analysis expands
on the other results in this manuscript to suggest that the posi-
tive relationship between rotation in the low-levels and rain-
fall rates at the surface may be particularly profound over
very short horizontal distances.

Collectively, these results are consistent with previous
modeling and observational studies that have demonstrated
positively correlated physical and quantitative relationships
between low-level storm-scale to mesoscale rotation and sur-
face precipitation rates (e.g., Nielsen and Schumacher 2018,
2020a,b; Brauer et al. 2020). This work provides novel contribu-
tions to the field by observationally quantifying this relationship
on finer spatiotemporal scales in an LTC environment. Future
work could aim to apply these methods to other systems, in-
cluding ones with various translational speeds and/or are more
prolific tornado producers, so that comparisons can be made
among system type and broader conclusions can be reached.
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Other spatiotemporal averaging approaches (such as weighting
techniques) and simulations of LTCs and their heavy rain-
producing processes via numerical modeling also offer avenues
for future research.
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